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Abstract

This paper describes the architecture and performance
of a network performance topology system for Grid envi-
ronments. Based on usage requirements gleaned from real
applications, we have implemented a high-performance ser-
vice for delivery of this information called the NWS Topol-
ogy Service. This implementation is compatible with extant
Grid Information Services, and we describe the model for
the objects being delivered.

1 Introduction

Performance information systems in Grid environments
are subject to a number of unique design considerations. In
particular, as adaptive Grid applications evolve, it is becom-
ing increasingly clear that the performance of Grid informa-
tion systems is a critical component ofapplication perfor-
mance[1, 5]. If the data is not delivered to the application
quickly, the application itself runs slowly, regardless ofhow
carefully it is written.

The Network Weather Service (NWS) [9, 10] is a sys-
tem for collecting and managing dynamic performance data
that is designed to meet the performance needs of its clients
(as well as their functionality needs). Its current imple-
mentation focuses on scalability, robustness and tolerance
of drastic performance fluctuation in both the resources it
uses and monitors. However, as Grid Computing contin-
ues to evolve, it is ever more apparent that a performance
information system must remain flexible in the extreme. In-
ternally, the NWS uses a set of protocols and management
strategies that are not intended to be visible across the client
interface (because they may change, they are complex, etc.)
In this paper,we describe a new approach for serving NWS
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0123911) and by the NASA IPG project.

currently required by emerging Grid efforts without sacri-
ficing the performance of the data delivery mechanisms. It
is our contention that even if (when) a standard data model
emerges for the Grid, applications and users will still re-
quire the ability to absorb and manipulate performance data
using a variety of representations and formats. Our goal
is to provide a framework that will enable this flexibility
while, at the same time, maintaining the performance in-
tegrity of the underlying monitoring system — the NWS.
Indeed, in the new era of Grid Computing that is envisioned
by the Open Grid Service Architecture (OGSA) [3], we be-
lieve that it is important that objects be defined in a manner
such that they can be delivered by a variety representational
mechanisms. Only by anticipating that the system and its
data will be used in so many new a different ways can we
ready ourselves for change.

At present, however, much of the current practice in Grid
computing uses the Globus Metacomputing Directory Ser-
vice (MDS) [2] and/or the Lightweight Directory Access
Protocol (LDAP) [8] for resource discovery and informa-
tion retrieval. LDAP imposes a particular structure (how-
ever flexible) on the organization data that it serves. This
paper addresses our approach to using a data model in a pre-
sentation layer that is designed to support high-performance
resource discovery and Grid scheduling. Our solution is en-
abled by the NWS’s caching infrastructure described previ-
ously in [6]. In this work, we describe the use of this infras-
tructure to supportVO-grids— a new high-performance ab-
straction that enables resource performance discovery. VO-
grids follow the Globus “Virtual Organization” model [2]
in design by allowing users to set up virtual collections of
resources within a more global Grid resource pool. Net-
work Weather Service VO-grids provide dynamic perfor-
mance forecasts in multi-dimensional arrays that are con-
stantly and asynchronously updated. As such, user appli-
cations can index these performance arrays with very little
programming and execution overhead. At the same time, it
is critical that the VO-grid interface be one that can be sup-
ported by the Grid performance monitoring and forecasting
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system as it scales up to very large Grid sizes. Using the hi-
erarchical forecasting infrastructure supported by the NWS,
we describe how VO-grids can be constructed scalably us-
ing the current Grid Information System infrastructure as a
framework.

However, one may wonder whether our solution is
unique to the LDAP interface. We believe that it is not.
While the implementation of OGSA is only now beginning,
it is clear that in the context of distributed resources and
data stores, confederated resources and imperfect data that
the requirements for application-specific caching and index-
ing are still key to effective operation. We believe, however,
that the hierarchical structure of the data model is necessary
to support scalability, regardless of the underlying technol-
ogy in play.

As such, we have implemented the functionality nec-
essary to build VO-grids as a separate, extensible service.
The NWS Topology Serviceextracts forecasting informa-
tion from NWS to build VO-grids based on user-specified
requirements. Our early experiences with the NWS Topol-
ogy Service (which this paper details) indicate that the per-
formance of the system (also described herein) represents a
dramatic improvement over the current state-of-art in Grid
performance data management. We present these results as
part of the on-going work in the Grid Application Develop-
ment Software (GrADS) [1] project which focuses on de-
velopment software frameworks for high-performance Grid
programs. In addition, this system will be part of the NSF’s
Middleware Initiative (NMI) release and deployment of the
NWS.

Briefly, then, this extended abstract outlines three novel
contributions.

1. It describes VO-grids as a new, high-performance and
scalable API and set of data structures for enabling
Grid performance discovery and scheduling.

2. It details a generalized data model used by a prototype
VO-grid implementation we have developed, that we
believe will extend to encompass a variety of presenta-
tion formats.

3. It presents the design of theNWS Topology Service—
an extensible facility for building and maintaining VO-
grids.

We report on preliminary performance observations we
have made of the system using the GrADS ScaLAPACK [5]
dynamic scheduler as an initial VO-grid client.

2 Design Considerations

To schedule Grid applications, often the Grid scheduler
(human or automatic) requires predictions of network per-
formance, end-to-end, between a set of potentially useful

hosts. We observe that regardless of how this data is served
to the scheduler, it is usually treated as a two-dimensional
matrix of performance characteristics between machines.
Using this data structure, each machine is given an index,
and the network performance (typically bandwidth or la-
tency) between any two machinesi andj is stored in the
matrix element corresponding to the ordered-pair(i; j).

It is our experience that this information can be delivered
through a variety of language-specific or service-specific
APIs. However, once delivered, almost all schedulers use
the information to form two-dimensional matrices. Our
goal in this work is to use the knowledge that the infor-
mation system possesses about how the data is managed to
provide a high-performance, general interface for delivering
these data structures to the scheduler.

Note that there are many ways to represent this informa-
tion other than a matrix. Indeed, it has been suggested that
linked structures reflecting the “true” topology of the net-
work might prove to be a better interface data structure. If
future schedulers require such a data structure, we believe
that the mechanisms we have developed will generalize to
be able to construct it as well. However, in a situation in
which there is no library interface we can embed the logic
to construct a host grid from this annotated graph, we are
simply forcing a grid scheduler or grid program to do the
work. To date all schedulers we have encountered attempt
to form an indexed matrix from the data presented (either
explicitly or implicitly), regardless of how it is delivered.
As such, we take our cue for the VO-grid API and matrix
data structure from the user community at large.

The scalability of our approach is a second potential con-
cern. In particular, it is not feasible for the underlying moni-
toring system (in our case, the NWS) to maintain a database
of N2 measurements and forecasts explicitly. Instead, we
rely on the hierarchical structure of the NWS clique mech-
anism [10] to provide a scalable way to estimate end-to-end
performance. A more complete description of how our sys-
tem populates the fullN2 matrix is given in Section 4 of
this extended abstract. As a design requirement, however,
we recognize that the data structure which will be presented
to the application scheduler must be one that we can build
scalably.

Finally, we contend that what is important from perfor-
mance information systems is not the interface to the infor-
mation system. Getting the data objects, whether it be via
LDAP, XML or some other “on the wire” encoding, should
be so mundane as to be invisible. At the same time, as stan-
dards emerge for information management, we want our
system to be able to support them with the same level of per-
formance described herein. The key to achieving this level
of extensibility for our system is the object model, which
we describe in the next section.

If we can deliver a full mesh of information to sched-
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Figure 1. Event elements under their parent
Series object

ulers quickly, then we would make a useful service available
as part of the “middleware” of the Grid. Finally, we make
note of the fact that other scheduling methodologies might
not need to know the full interconnect matrix, but might
rather want to query an information system for the connec-
tion characteristics between two nodes, that are fixed in the
configuration for some reason. In this case, the information
system must have the same information as the common case
outlined above – the requirements are the same.

In summary, our implementation recognizes three key
design requirements:

1. Network aware applications require multi-dimensional
“performance Grids” (termed VO-grids) to be ex-
tracted from a pool of networked compute elements.

2. It must be possible to construct VO-grids scalably, and
to deliver the data structures that compose the VO-grid
API with the minimum possible impact on application
performance.

3. The VO-grid API should not be tied to a particular pre-
sentation format or set of wire protocols.

3 Data Model and Objects

We have described the object model for the NWS more
extensively in [6]. The flexibility that we described is key
in our approach to solving this problem. Intuitively, we
can think about the answer to the query “what is the band-
width for a specified resource collection?” as being a set of
records (a “cursor” in database terms.)

The data elements in the NWS are objects of the GridE-
vent (event) type. They are normally grouped under the
GridSeries (series) object, which contains meta-information
about the series, shown in Figure 1. All events are also

Figure 2. Event elements under the o=Data
branch of the tree.

Figure 3. Event elements with indices under
a VO-grid object

available under theo=Data branch of the directory infor-
mation tree, as seen in Figure 2. This is conceptually where
application-specific events (i.e., those not part of an ongo-
ing GridActivity ) are referenced.

Consider that the GridSeries object really just acts to
name an index over a set ofGridEvents and define a
parameterized query over that pool. (i.e. a base of
“series=nws.cs.ucsb.edu:8060 . bandwidthTcp.32.16.64 .
nws.cs.utk.edu:8060, service=NWS, o=Grid” and a filter
of “timestamp> 1015015530” is equivalent to “select*
from event where name like ’nws.cs.ucsb.edu:8060 . band-
widthTcp.32.16.64 . nws.cs.utk.edu’ and timestamp>
1015015530 order by timestamp”) Similarly, we can also
create a namespace that defines all results from a given host,
activity, or clique.

We have implemented an object that creates an index
over the GridEvent pool that is useful for schedulers and
that we refer to as a “VO-grid.” This object defines a set



www.manaraa.com

of GridEvents that covers theN2 matrix of performance
values that we discussed in the previous section. It is very
useful because this is a natural unit to consider – and this
is what schedulers want. Also, we have observed that the
many users don’t take the time to form restrictive queries,
rather posing overly broad questions and filtering them lo-
cally. This type of usage will become less and less practical
as the scope of the Grid continues to grow. Only scoped
subsets of information can be (or need to be) addressed by
any given index or query. This is completely compatible
with the notion of the “Virtual Organizations” described in
[2]. By creating “VO-grids” of performance information
users will still find the system easy to use and efficient im-
plementation will still be practical.

This approach is also useful to perform queries that order
or bound by a given value, based on the namespace. This
is important given the lack of support for floating point in
most LDAP implementations. Also, this mechanism can be
used as a “cache preload” mechanism. Indeed, by forming
these relatively static queries, they are easier to cache. On
the other hand, this does limit the types of queries that can
be easily made, but we regard this as an acceptable tradeoff.
We contend that, in general,arbitrary queries and joins are
not necessary. Most of the useful queries are fairly intuitive
and can be easily anticipated.

TheVO-grid object is depicted in Figure 3. Is is an ob-
ject that contains meta-information about some collection
of data elements, and acts as their parent in the LDAP hi-
erarchy. In this example,VO-grid=GrADS, service=NWS,
o=Grid is such an object object and it contains a list of
the hosts in this grid with their indices. The children of
this node are collection of the appropriate data elements,
“joined” with an ordered pair of the appropriate indices in
this grid. This can be thought of as a cursor of elements that
is returned as a result of query in a relational database sys-
tem. With index information in each element, the grid can
be easily reassembled.

Since our object model is highly normalized, it allows
us to compose objects as we see fit. In the case of the net-
work performance grid, latency and bandwidth are joined
for a composite network characterization object. In addition
to networking information, there are other metrics that are
valuable in scheduling for the Grid – processor utilization
and available memory. These data elements are logically
separate, gathered and forecast separately, but it is useful to
join them in a “host vitals” object.

Finally, how can these grids be specified and created?
The current implementation allows for a file-based interface
and a GIS-based interface that allows a grid to be specified
with and LDAP query (i.e. the tuple of server, base and fil-
ter.) There is no reason that this could not be made dynamic
with an LDAP modify or insert operation, given that appro-
priate security mechanisms were used to prevent abuse. We

Figure 4. A hierarchy of cliques

currently have a system operational that creates and caches
host grids for the GrADS [1] testbed machines.

3.1 Relation to XML-based Systems

At first glance this system may seem to exist completely
to deal with the peculiarities of the LDAP interface. How-
ever, it is completely relevant to other information presen-
tation mechanisms as well. We are in the process of im-
plementing a system that will support delivery of the same
objects in LDAP and XML to support the Grid Monitoring
Architecture (GMA) [7] as well as the MDS. Clearly, these
design constraints also neatly anticipate the requirements of
the emerging OGSA [3] architecture.

Consider objects containing this same information that
are encoded using XML. Even if you could count on the
ordering of multi-valued attributes, it would still be the re-
sponsibility of the application developer or scheduler to pull
the objects apart and reassociate them into a performance
grid. “Why not just deliver the actual grid in XML?”, one
might ask. Discarding the initial impulse to represent each
row as a comma-delimited set of values, as this would again
require the user to parse the message and would lose the
benefit of XML, we assume that each value would need to
be tagged. To tag every value and give a structural encoding
of the host grid information seems to us to obviate the sim-
plicity of XML encoding. In short, the notion of an index is
valuable in this setting as well.

Complete paper will include objects translated into
XML.

4 Topology System

The real success in this work lies in presenting effective
network information to Grid programs. We have to balance
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Figure 5. Partial Grid of measurements

Figure 6. Complete Grid of forecasts

the need for accurate network information with a design that
allows the system to scale to large numbers of hosts. Some
of these issues have been explored previously in work such
as the IDMaps [4] system. which shares a similar set of
goals.

The NWS allows for scalable measurements to be taken
by arranging groups of hosts in which a full mesh of mea-
surements is taken, known ascliques, into a hierarchy. This
is depicted in Figure 4. This gives us a connectivity grid that
is depicted in Figure 5, and we would like to transform this
in to a fully populated grid, shown in Figure 6. The NWS is
able to do this by providingforecastsfor the areas in which
no measurements have been taken.

The easy way to approach the problem of grouping is
to use the domain portion of a fully-qualified DNS name
and to assume that those form an equivalence class. This

approach, however, is lacking. In practice Domain Name
System (DNS) domains denote administrative scope and
not network topology. The DNS domainnpaci.edu, for
instance, is used by many sites across a wide geographic
distance. The IP address of a host, on the other hand, is
the definitive location of the host as far as the network is
concerned. If it weren’t, then traffic wouldn’t get there at
all! However, it isn’t clear from looking at most pairs of IP
addresses whether they actually share a subnetwork or not.
This is determined from the tuple of address and netmask.
This information is available on the host, so we require the
collusion of the sensor to get this information.

In the GrADS testbed, the clique structure has been spec-
ified so that this information is implicit. This allowed the
scheduling systems to use the notion of “clique leaders” to
form the complete host grid. We note that this is a result of
manual configuration and is not a general solution.

The topology system’s internals are not the focus of this
paper. Future work will detail how measurements can be ef-
fectively grouped into the host grids, and how user queries
can be used to drive more effective measurement control.
For this prototype implementation, we simply used combi-
nations of IP addresses and subnet masks to form the ba-
sic set of equivalence classes. This discards a great deal of
information that is apparent in the relations between Au-
tonomous Systems and potentially ignores the effects of
Layer 2 tunneling and the virtual private networks. We are
developing a far more comprehensive topology service that
takes much of this into account.

5 Performance Results

This service was implemented in the NWS’s caching
LDAP daemon, which is described in [6]. As part of the
GrADS project, a Grid-enabled version of ScaLAPACK [5]
has been developed that uses the LDAP interface to the
NWS. We found, despite the performance enhancements
documented in [6], that we could optimize data delivery
even further. Figure 7 shows a comparison of NWS LDAP
and NWS Topology Service query times for the fullN2 ma-
trix of bandwidth forecasts required by the GrADS ScaLA-
PACK code when the client and the NWS server are co-
located. The leftmost bar for each host count is the total
fetch time (in seconds) for fetching theN2 elements using
the caching NWS LDAP server if the data is not in cache.
The next bar from the left is the fetch time if the data is
in cache. The third bar from the left shows the cold-cache
fetch time from the NWS Topology service, and the last bar
(rightmost) shows the cached fetch times.

Comparing cold-cache performance demonstrates the ef-
fectiveness of having the information system (as opposed to
the application-level components) aggregate the data. Be-
cause the NWS Topology service can incorporate intimate
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Figure 7. LDAP queries to local infrastructure
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Figure 8. LDAP queries to local infrastructure
(log scale)
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Figure 9. LDAP queries to remote infrastruc-
ture
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knowledge of how the NWS manages its data internally, it
can optimize the data aggregation. The cached times show
the performance that the GrADS ScaLAPACK client actu-
ally achieved for all but its first query. The range of values
is such that a cache hit against the NWS Topology Service
LDAP server isn’t even discernible. We have included a
log-scale plot of the same data in Figure 8.

Similarly, Figure 9 shows the same comparisons over the
same range of host counts when the client was located at U.
Tennessee and the NWS daemons were running on a host
at UC Santa Barbara. Figure 10 shows these results on a
log-scale plot as well. Clearly, in either the local or re-
mote access cases, the NWS Topology Service implement-
ing a VO-grid for GrADS is able to achieve relatively high-
performance levels across the scale of the GrADS testbed.

In the full paper, should this extended abstract be ac-
cepted, we will provide a more comprehensive set of empir-
ical results from different Grid settings.

6 Conclusion

We have shown that our object model is flexible enough
to afford new functionality, and have demonstrated how re-
alistic and useful queries can be made against a GIS (inde-
pendent of the protocol used). This methodology should be
of broad applicability to the Grid community, as it demon-
strates that GIS systems can be made to perform appropri-
ately.

Finally, we have demonstrated the efficacy of a simple
topology system that is useful for scheduling in Grid envi-
ronments.
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